
DOI 10.1140/epja/i2002-10036-6

Eur. Phys. J. A 15, 409–416 (2002) THE EUROPEAN
PHYSICAL JOURNAL A

Mesons of the f0 family in processes ππ → ππ,KK up to 2 GeV
and the chiral-symmetry breaking

Yu.S. Surovtsev1,a, D. Krupa2,b, and M. Nagy2,c

1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141 980, Moscow Region, Russia
2 Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 842 28 Bratislava, Slovakia
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Abstract. In a combined analysis of the experimental data on the coupled processes ππ → ππ, KK in
the channel with IGJPC = 0+0++, the various scenarios of these reactions (with different numbers of
resonances) are considered. In a model-independent approach, based only on analyticity and unitarity,
a resonance is represented by a pole cluster (poles on the Riemann surface) of the definite type that
is defined by the state nature. The best scenario contains the resonances f0(665) (with properties of
the σ-meson), f0(980) (with a dominant ss̄ component), f0(1500) (with a dominant flavour-singlet, e.g.,
glueball component) and the f0(1710) (with a considerable ss̄ component). If the f0(1370) exists, it has
a dominant ss̄ component. The coupling constants of the observed states with the considered channels
and the ππ and KK scattering lengths are obtained. The conclusion on the linear realization of chiral
symmetry is drawn.

PACS. 11.55.Bq Analytic properties of S-matrix – 11.80.Gw Multichannel scattering – 12.39.Mk Glueball
and nonstandard multi-quark/gluon states – 14.40.Cs Other mesons with S = C = 0, mass < 2.5 GeV

1 Introduction

In the scalar mesonic sector, many states have been dis-
covered at present [1], however, their assignment to quark-
model configurations is problematic —one can compare
various variants of that assignment, for example, [2–8].
It seems that the problem of scalar mesons is far off the
solution up to now. For instance, at present, additional ar-
guments have been added by N.N. Achasov [9] in favour of
the 4-quark nature of f0(980) and a0(980) mesons on the
basis of interpretation of the experimental data on the de-
cays φ → γπ0π0, γπ0η [10]. On the other hand, F.E. Close
and A. Kirk [11] have shown that mixing between the
f0(980) and a0(980) radically affects some existing pre-
dictions of their production in φ radiative decay. Gen-
erally, the 4-quark interpretation, beautifully solving the
old problem of the unusual properties of scalar mesons,
sets new questions. Where are the 2-quark states, their
radial excitations and the other members of 4-quark mul-
tiplets 9, 9∗, 36 and 36∗, which are predicted to exist below
2.5 GeV [12]?
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The discovered states in the scalar sector and their
properties do not allow one to make up the scalar qq̄ nonet
and to solve other exiting questions up to now. Gener-
ally, difficulties in understanding the scalar-isoscalar sec-
tor seem to be related to both the hard-accounting in-
fluence of the vacuum (and such effects as the instanton
contributions) and a strong model dependence of an in-
formation about wide multichannel states.

Earlier, we have shown [13] that an inadequate de-
scription of multichannel states (to which scalar mesons
belong) gives not only their distorted parameters when an-
alyzing data but also can cause the fictitious states when
one neglects important (even energetic-closed) channels.
Obviously, it is important to have a model-independent in-
formation on investigated states and on their QCD nature.
It can be obtained only on the basis of the first principles
(analyticity, unitarity) immediately applied to experimen-
tal data analysis. Earlier, we have proposed this method
for 2- and 3-channel resonances and developed the concept
of standard clusters (poles on the Riemann surface) as a
qualitative characteristic of a state and a sufficient con-
dition of its existence [13]. We outline this below for the
2-channel case of the coupled processes ππ → ππ,KK in
the channel with IGJPC = 0+0++. Since, in this work, a
main stress is laid on studying lowest states, it is sufficient
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to restrict oneself to a two-channel approach when consid-
ering simultaneously the coupled processes ππ → ππ,KK,
though in the future it is necessary to take into account
the thresholds of other coupled processes, first of all, of
ηη and ηη′ scatterings. In this work, we are going to show
that the large background, which one has obtained earlier
in various analyses of the s-wave ππ scattering [1], hides,
in reality, the σ-meson [14] below 1 GeV and the effect of
the left-hand branch point. Therefore, in the uniformizing
variable, one must take into account, besides the branch
points corresponding to the thresholds of the processes
ππ → ππ,KK, also the left-hand branch point at s = 0,
related to the background in which the crossing-channel
contributions are contained [15]. Furthermore, we shall
obtain definite indications of the QCD nature of other
f0-resonances and of the linear realization of chiral sym-
metry.

Note that recent new analyses of old and new exper-
imental data found a candidate for the σ-meson below
1 GeV (see, e.g., [2,3,16–20]). However, these analyses use
either the Breit-Wigner form that is insufficiently-flexible
even if modified or the K-matrix formalism without tak-
ing account of the energetic-closed (maybe, important)
channels, or specific forms of interactions in the quark
models; therefore, one cannot talk about the model inde-
pendence of results. Besides, in these analyses, a large ππ
background is obtained.

The layout of this paper is as follows. In sect. 2, we
outline the two-coupled-channel formalism, determine the
pole clusters on the Riemann surface as characteristics
of multichannel states, and introduce a new uniformizing
variable, allowing for the branch points of the right-hand
(unitary) and left-hand cuts of the ππ scattering ampli-
tude. In sect. 3, we analyze simultaneously experimen-
tal data on the processes ππ → ππ,KK in the isoscalar
s-wave on the basis of the presented approach. Note that
earlier we have shown in two approaches [13] and [15] with-
out and with taking into account the left-hand branch
point

√
s in the uniformizing variable, respectively, that

the minimal scenario of the simultaneous description of
two coupled processes ππ → ππ,KK is realized without
the f0(1370) and f0(1710) that are in the Particle Data
Group tables. Therefore, we consider also the variants
of description of the indicated processes including these
states separately as well as simultaneously, and obtain in-
dications of their QCD nature different from the results
of many other works (note that our approach is based on
the first principles and is free from dynamic assumptions,
therefore, our results are rather model independent). In
the conclusion, the obtained results are discussed.

2 Two-coupled-channel formalism

Here we restrict ourselves to a 2-channel consideration of
the coupled processes ππ → ππ,KK. Therefore, we have
the 2-channel S-matrix determined on the 4-sheeted Rie-
mann surface. The matrix elements Sαβ , where α, β =
1(ππ), 2(KK), have the right-hand cuts along the real axis

of the s-plane, starting at 4m2
π and 4m2

K , and the left-
hand cuts, beginning at s = 0 for S11 and at 4(m2

K −m2
π)

for S22 and S12. The Riemann-surface sheets are num-
bered according to the signs of analytic continuations of
the channel momenta

k1 = (s/4 −m2
π)1/2, k2 = (s/4 −m2

K)1/2 (1)

as follows: signs (Imk1, Imk2) = ++,−+,−−,+− corre-
spond to the sheets I, II, III, IV.

To obtain the resonance representation on the Rie-
mann surface, we express analytic continuations of the ma-
trix elements to the unphysical sheets SL

αβ (L = II, III, IV)
in terms of those on the physical sheet SI

αβ :

SII
11 =

1
SI

11

, SIII
11 =

SI
22

detSI
, SIV

11 =
detSI

SI
22

,

SII
22 =

detSI

SI
11

, SIII
22 =

SI
11

detSI
, SIV

22 =
1

SI
22

, (2)

SII
12 =

iSI
12

SI
11

, SIII
12 =

−SI
12

detSI
, SIV

12 =
iSI

12

SI
22

,

Here detSI = SI
11S

I
22 − (SI

12)2; (SI
12)2 =

−s−1
√

(s− 4m2
π)(s− 4m2

K)F (s); in the limited en-
ergy interval, F (s) is proportional to the squared product
of the coupling constants of the considered state with
channels 1 and 2. These formulas are convenient by
that the S-matrix elements on the physical sheet SI

αβ
have, except for the real axis, only zeros corresponding
to resonances, at least, around the physical region that
is interesting for us. Formulas (2) immediately give
the resonance representation by poles and zeros on the
4-sheeted Riemann surface. One must distinguish between
three types of 2-channel resonances described by a pair of
conjugate zeros on sheet I: a) in S11, b) in S22, c) in each
of S11 and S22. As seen from eqs. (2), to the resonances
of types a) and b), there corresponds a pair of complex
conjugate poles on sheet III shifted relative to a pair of
poles on sheet II and IV, respectively. For the states of
type c), one must consider the corresponding two pairs of
conjugate poles on sheet III. A resonance of every type
is represented by a pair of complex-conjugate clusters
(of poles and zeros on the Riemann surface) of a size
typical of strong interactions. The cluster kind is related
to the state nature. The resonance coupled relatively
more strongly to the ππ-channel than to the KK one is
described by the cluster of type a); in the opposite case,
it is represented by the cluster of type b) (say, the state
with the dominant ss̄ component); the flavour singlet
(e.g., glueball) must be represented by the cluster of
type c) as a necessary condition, if this state lies above
the thresholds of the considered channels.

Furthermore, according to the type of pole clusters,
we can distinguish, in a model-independent way, a bound
state of colourless particles (e.g., KK molecule) and a qq̄
bound state [13,21]. Just as in the 1-channel case, the ex-
istence of a particle bound state means the presence of a
pole on the real axis under the threshold on the phys-
ical sheet, so in the 2-channel case, the existence of a
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Fig. 1. Uniformization plane for the ππ scattering amplitude.

particle bound state in channel 2 (KK molecule) that,
however, can decay into channel 1 (ππ-decay), would im-
ply the presence of a pair of complex conjugate poles on
sheet II under the second-channel threshold without an
accompaniment of the corresponding shifted pair of poles
on sheet III. Namely, according to this test, earlier, the
interpretation of the f0(980) state as a KK molecule has
been rejected.

For the simultaneous analysis of experimental data on
coupled processes, it is convenient to use the Le Couteur-
Newton relations [22] expressing the S-matrix elements of
all coupled processes in terms of the Jost matrix deter-
minant d(k1, k2), the real analytic function with the only
square-root branch points at ki = 0. To take into account,
in addition to the latter, also the left-hand branch point
at s = 0, the uniformizing variable is used 1

v =
mK

√
s− 4m2

π + mπ

√
s− 4m2

K√
s(m2

K −m2
π)

. (3)

It maps the 4-sheeted Riemann surface with two unitary
cuts and the left-hand cut onto the v-plane. (Note that
other authors have used the parameterizations with the
Jost functions in analyzing the s-wave ππ scattering in
the one-channel approach [24] and in the two-channel one
[21]. In latter work, the uniformizing variable k2 has been
used, therefore, their approach cannot be employed near
by the ππ threshold.)

In fig. 1, the plane of the uniformizing variable v for the
ππ scattering amplitude is depicted. The Roman numerals
(I,. . . , IV) denote the images of the corresponding sheets;
the thick line represents the physical region; the points i,
1 and b =

√
(mK + mπ)/(mK −mπ) correspond to the

ππ,KK thresholds and s = ∞, respectively; the shaded
intervals

(−∞,−b], [−b−1, b−1], [b,∞)

1 The analogous uniformizing variable has been used, e.g., in
ref. [23] in studying the forward elastic pp̄ scattering amplitude.

are the images of the corresponding edges of the left-hand
cut. The depicted positions of poles (∗) and of zeros (◦)
give the representation of the type a) resonance in S11.

On the v-plane, S11 has no cuts; however, S12 and S22

do have the cuts which arise from the left-hand cut on
the s-plane, starting at s = 4(m2

K −m2
π), which further is

neglected in the Riemann-surface structure, and the con-
tribution of this cut is taken into account in the KK back-
ground as a pole on the real s-axis on the physical sheet
in the sub-KK-threshold region.

On v-plane, the Le Couteur-Newton relations are [13,
22]

S11 =
d(−v−1)
d(v)

, S22 =
d(v−1)
d(v)

, S11S22−S2
12 =

d(−v)
d(v)

.

(4)
The d(v)-function already does not possess branch points
and is taken as

d = dBdres, (5)

where dB = BπBK ; Bπ contains the possible remain-
ing ππ background contribution, related to exchanges in
crossing channels (the consequent analysis gives Bπ = 1);
BK is that part of the KK background which does not
contribute to the ππ scattering amplitude:

BK = v−4(1 − v0v)4(1 + v∗0v)4. (6)

The fourth power in (6) is stipulated by the following
model-independent arguments [15]. First, a pole on the
real s-axis on the physical sheet in S22 is accompanied by a
pole in sheet II at the same s-value (as seen from eqs. (2)).
On the v-plane this implies the pole of second order (and
also zero of the same order, symmetric to the pole with
respect to the real axis). Second, for the s-channel process
ππ → KK, the crossing u- and t-channels are the π − K
and π − K scattering (exchanges in these channels give
contributions on the left-hand cut). This results in the ad-
ditional doubling of the multiplicity of the indicated pole
on the v-plane. So, the model of the KK background is
determined by poles (here by the single one) on the real
s-axis at the left-hand cut position on the physical sheet.

The function dres(v) represents the contribution of res-
onances, described by one of three types of the pole-zero
clusters, i.e.,

dres = v−M
M∏

n=1

(1 − v∗nv)(1 + vnv), (7)

where M is the number of pairs of the conjugate zeros.

3 Analysis of experimental data

We simultaneously analyze the available experimental
data on the ππ scattering [25] and the process ππ → KK
[26] in the channel with IGJPC = 0+0++. As data, we
use the results of phase analyses which are given for
phase shifts of the amplitudes (δ1 and δ12) and for mod-
uli of the S-matrix elements η1 = |Saa| (a = 1ππ, 2KK)
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Table 1. Demonstration of the quality of fits to the experimental data.

Variant 1 2
Quantity δ1 η δ12 ξ δ1 η δ12 ξ

Number of 160 50 80 33 160 50 80 39
experimental points

χ2/NDF 2.7 0.72 2.37 1.1 2.85 0.82 3.98 0.92

χ2/NDF 1.96 2.01 2.01 3

χ2/NDF 1.98 2.45

v0 0.954381 + 0.29859i 0.97925 + 0.202657i
(s0,GeV

2) (0.441) (0.6466)

Variant 3 4
Quantity δ1 η δ12 ξ δ1 η δ12 ξ
Number of 160 50 80 42 160 50 80 42
experimental points

χ2/NDF 2.38 0.8 2.25 0.92 2.57 0.85 4.74 1.05

χ2/NDF 1.72 1.8 1.81 3.49

χ2/NDF 1.76 2.59

v0 0.954572 + 0.29798i 0.982091 + 0.188405i
(s0,GeV

2) (0.4646) (0.678)
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Fig. 2. Energy dependence of phase shifts and moduli of the matrix elements of processes ππ → ππ, KK obtained on the
basis of a combined analysis of the experimental data: the short-dashed lines correspond to variant 1; the long-dashed curves,
to variant 2; the dot-dashed ones, to variant 4; and the solid lines, to variant 3. The data for the ππ scattering are taken from
ref. [25]; for the process ππ → KK, from ref. [26].

and ξ = |S12|. The 2-channel unitarity condition gives
η1 = η2 = η, ξ = (1 − η2)1/2, δ12 = δ1 + δ2.

We consider four variants, in which the following states
are taken into account:
Variant 1: The f0(665) and f0(980)) with the clusters of
type a), and f0(1500), of type c);
Variant 2: The same three resonances + the f0(1370) of
type b);
Variant 3: The f0(665), f0(980)) and f0(1500) + the
f0(1710) of type b);

Variant 4: All the five resonances of the indicated types.

The other possibilities of the representation of these
states are rejected by our analysis. We consider these vari-
ants, because the minimal possibility of the simultaneous
description of two coupled processes ππ → ππ,KK is re-
alized without the f0(1370) and f0(1710), as is shown in
our work [15]. The ππ scattering data are described from
the threshold to 1.89 GeV in all the four variants (in ad-
dition, we take Bπ = 1) and are taken from the analysis
by B. Hyams et al. [25] in this energy region, and below
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Table 2. Pole clusters for the considered resonances in variant 3.

Sheet II III IV

f0(665) E, MeV 570± 13 700± 15
Γ , MeV 590± 24 72± 5

f0(980) E, MeV 989± 5 982± 14
Γ , MeV 29± 7 195± 21

f0(1500) E, MeV 1505± 23 1490± 30 1510± 25 1430± 20
Γ , MeV 272± 25 220± 26 370± 30 275± 32

f0(1710) E, MeV 1680± 20 1700± 15
Γ , MeV 114± 15 138± 21

1 GeV, from many works [25]. For the reaction ππ → KK,
practically all the accessible data are used, but the descrip-
tion ranges are slightly different for various variants and
extend from the threshold to ∼ 1.4 GeV for variant 1, to
∼ 1.46 GeV for variant 2, and to ∼ 1.5 GeV for variants
3 and 4. Table 1 demonstrates the quality of fits to the
experimental data (the number of fitted parameters is 17
for variant 1, 21 for variants 2 and 3, 25 for variant 4).
When calculating χ2/NDF, we have rejected the experi-
mental points at 0.61, 0.65, and 0.73 GeV for δ1, at 0.99,
1.65, and 1.85 GeV for η, at 1.111, 1.163, and 1.387 GeV
for δ12, and at 1.002, 1.265, and 1.287 GeV for ξ that give
an especially large contribution to χ2. We note that two
variants (1 and 3) are the best, both without the f0(1370),
and we stress that this analysis uses the parameterless de-
scription of the ππ background.

Let us indicate the obtained zero positions, on the
v-plane, of the corresponding resonances:
Variant 1:

forf0(665) : v1 = 1.36964 + 0.208632i,
v2 = 0.921962 − 0.25348i,

forf0(980) : v3 = 1.04834 + 0.0478652i,
v4 = 0.858452 − 0.0925771i,

forf0(1500) : v5 = 1.2587 + 0.0398893i,
v6 = 1.2323 − 0.0323298i,
v7 = 0.809818 − 0.019354i,
v8 = 0.793914 − 0.0266319i,

Variant 2:

forf0(665) : v1 = 1.36783 + 0.212659i,
v2 = 0.921962 − 0.25348i,

forf0(980) : v3 = 1.04462 + 0.0479703i,
v4 = 0.858452 − 0.0925771i,

forf0(1370) : v5 = 1.22783 − 0.0483842i,
v6 = 0.802595 − 0.0379537i,

forf0(1500) : v7 = 1.2587 + 0.0398893i,
v8 = 1.24837 − 0.0358916i,
v9 = 0.804333 − 0.0179899i,
v10 = 0.795579 − 0.0253985i,

Variant 3:

forf0(665) : v1 = 1.38633 + 0.230588i,
v2 = 0.904085 − 0.263033i,

forf0(980) : v3 = 1.05103 + 0.0487473i,
v4 = 0.864109 − 0.0922272i,

forf0(1500) : v5 = 1.2477 + 0.0321349i,
v6 = 1.24027 − 0.0384191i,
v7 = 0.804333 − 0.0179899i,
v8 = 0.795579 − 0.0253985i,

forf0(1710) : v9 = 1.25928 − 0.0115127i,
v10 = 0.795429 − 0.00629969i.

Variant 4:

forf0(665) : v1 = 1.37103 + 0.21659i,
v2 = 0.917731 − 0.256026i,

forf0(980) : v3 = 1.0457 + 0.0507053i,
v4 = 0.858452 − 0.0925771i,

forf0(1370) : v5 = 1.22781 − 0.0496592i,
v6 = 0.801009 − 0.0420258i,

forf0(1500) : v7 = 1.25817 + 0.0397054i,
v8 = 1.25078 − 0.0350769i,
v9 = 0.809333 − 0.0179899i,
v10 = 0.795579 − 0.0253985i,

forf0(1710) : v11 = 1.2604 − 0.00927258i,
v12 = 0.794694 − 0.00458088i.

Figures 2 demonstrate the comparison of the obtained
energy dependence of the four analyzed quantities with
the experimental data: The short-dashed lines correspond
to variant 1; the long-dashed curves, to variant 2; the dot-
dashed ones, to variant 4; and the solid lines, to variant 3.

In tables 2 and 3, the obtained pole clusters of the con-
sidered resonances are shown on the corresponding sheets
on the complex energy plane (

√
sr = Er−iΓr) for the best

variant 3 (without the f(1370)) and for variant 4 (with all
five states).

The coupling constants of the obtained states with ππ
(g1) and KK (g2) systems are calculated through the
residues of amplitudes at the pole on sheet II for reso-
nances of types a) and c), and on sheet IV for resonances
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Table 3. Pole clusters for the considered resonances in variant 4.

Sheet II III IV

f0(665) E, MeV 600± 16 715± 17
Γ , MeV 605± 28 59± 6

f0(980) E, MeV 985± 5 984± 18
Γ , MeV 27± 8 210± 22

f0(1370) E, MeV 1310± 22 1320± 20
Γ , MeV 410± 29 275± 25

f0(1500) E, MeV 1528± 22 1490± 30 1510± 20 1510± 21
Γ , MeV 385± 25 220± 24 370± 30 308± 30

f0(1710) E, MeV 1700± 25 1700± 20
Γ , MeV 86± 16 115± 20

Table 4. Coupling constants of obtained states with ππ (g1) and KK (g2) systems.

f0(665) f0(980) f0(1370) f0(1500)

g1, GeV 0.652± 0.065 0.167± 0.05 0.116± 0.03 0.657± 0.113
g2, GeV 0.724± 0.1 0.445± 0.031 0.99± 0.05 0.666± 0.15

of type b). Expressing the T -matrix via the S-matrix as

Sii = 1 + 2iρiTii, S12 = 2i
√
ρ1ρ2T12, (8)

where ρi =
√

(s− 4m2
i )/s, and taking the resonance part

of the amplitude as

T res
ij =

∑

r

girgrjD
−1
r (s) (9)

with Dr(s) being an inverse propagator (Dr(s) ∝ s− sr),
we show the results of that calculation in table 4. We see
that the f0(980) and especially the f0(1370) are coupled
essentially more strongly to the KK system than to the
ππ one, which tells about the dominant ss̄ component in
these states. The f0(1500) has the approximately equal
coupling constants with the ππ and KK systems, which
apparently could point up to its dominant glueball compo-
nent [27]. The coupling constant of the f0(1710) with the
ππ-channel cannot be calculated by this method, unless
the description of ππ → KK reaction is obtained in the
region of this resonance. But this state is represented by
the cluster corresponding to the dominant ss̄ component.

Let us also present the calculated scattering lengths.
For the KK scattering:

a0
0 = −1.25 ± 0.11 + (0.65 ± 0.09)i, [m−1

π+ ]; (variant1),

a0
0 = −1.548±0.13+(0.634±0.1)i, [m−1

π+ ]; (variant2),

a0
0 = −1.19±0.08+(0.622±0.07)i, [m−1

π+ ]; (variant3),

a0
0 = −1.58 ± 0.12 + (0.59 ± 0.1)i, [m−1

π+ ]; (variant4).

The presence of the imaginary part in a0
0(KK) reflects

the fact that already at the threshold of the KK, other
channels (2π, 4π, etc.) are opened. Variants 2 and 4 in-
clude the f0(1370) unlike variants 1 and 3. We see that
Re a0

0(KK) is very sensitive to whether this state exists
or not.

In table 5, we compare our results for the ππ scatter-
ing length a0

0 with results of some other theoretical and
experimental works.

At first, let us remark about the result of ref. [18] for
the ππ scattering length. We think that such a small value
(0.23 m−1

π+) has been obtained, because there has been
used an assumption about the negative ππ background in
the phase shift. Now, from table 5 we see that our results
correspond to the linear realization of chiral symmetry.

We have here presented model-independent results: the
pole positions, coupling constants and scattering lengths.
Masses and widths of these states that should be calcu-
lated from the obtained pole positions and coupling con-
stants are highly model dependent. For instance, if we
suppose that the f0(665) is the σ-meson, then from the
known relation

gσππ =
m2

σ −m2
π√

2fπ0

(here fπ0 is the constant of weak decay of the π0: fπ0 =
93.1 MeV), we obtain mσ ≈ 342 MeV.

If we take the resonance part of amplitude in a non-
relativistic form (see [1], p. 214)

T res =
Γel/2

Eσ − E − iΓtot/2
,

then we have Eσ ≈ 570 ± 21 MeV and Γtot ≈ 1400 ±
30 MeV; for the so-called relativistic form

T res =
√
sΓel

m2
σ − s− i

√
sΓtot

,

the following values are obtained: mσ ≈ 850 ± 20 MeV
and Γ ≈ 1240 ± 30 MeV.
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Table 5. Comparison of theoretical and experimental values for the ππ scattering length a0
0.

a0
0, m−1

π+ References Remarks

0.27± 0.06 (1) Our paper Model-independent approach
0.267± 0.07 (2)
0.28± 0.05 (3)
0.27± 0.08 (4)
0.26± 0.05 L. Rosselet et al. [25] Analysis of the decay K → ππeν

using Roy’s model

0.24± 0.09 A.A. Bel’kov et al. [25] Analysis of π−p → π+π−n
using the effective range formula

0.23 S. Ishida et al. [18] Modified analysis of ππ scattering
using Breit-Wigner forms

0.16 S. Weinberg [28] Current algebra (non-linear σ-model)

0.20 J. Gasser, H. Leutwyler [29] One-loop corrections, non-linear
realization of chiral symmetry

0.217 J. Bijnens et al. [30] Two-loop corrections, non-linear
realization of chiral symmetry

0.26 M.K. Volkov [31] Linear realization of chiral symmetry

0.28 A.N. Ivanov, N. Troitskaya [32] A variant of chiral theory with
linear realization of chiral symmetry

4 Conclusions

On the basis of a simultaneous description of the isoscalar
s-wave channel of the processes ππ → ππ,KK with a pa-
rameterless representation of the ππ background, a model-
independent confirmation of the σ-meson below 1 GeV is
obtained. We emphasize that this is a real evidence of this
state, because we have not been enforced to construct the
ππ background.

A parameterless description of the ππ background is
given only by allowance for the left-hand branch point in
the proper uniformizing variable. This seems to be related
to the fact that the exchanges by nearest σ- and ρ-mesons
in the crossing channels contribute to the ππ scattering
amplitude with opposite signs (due to gauge invariance)
and compensate each other.

Note also that a light σ-meson is needed, for exam-
ple, for an explanation of K → ππ transitions using
the Dyson-Schwinger model [33] and for an explanation
of the experimental value of the pion-nucleon Σ-term
(ΣπN ∼ 40–70 MeV) in a linear σ-model based on the
U(3) × U(3) quark effective Lagrangian [34].

Since all the fitted parameters in describing the ππ
scattering are only the positions of poles corresponding
to resonances, we conclude that our model-independent
approach is a valuable tool for studying the realization
schemes of chiral symmetry. The existence of the low-lying
state f0(665) with the properties of the σ-meson and the
obtained ππ scattering length (a0

0(ππ) ≈ 0.27[m−1
π+ ]) sug-

gest the linear realization of chiral symmetry.
The analysis of the used experimental data gives ev-

idence that the f0(980)- and especially the f0(1370)-

resonance (if it exists —variants 2 and 4), have the domi-
nant ss̄ component. Note that a minimum scenario of the
simultaneous description of processes ππ → ππ,KK goes
without the f0(1370)-resonance. The best total χ2/NDF

for both the analyzed processes is obtained with the set of
states: f0(665), f0(980), f0(1500) and f0(1710). The KK
scattering length is very sensitive to whether the f0(1370)
state exists or not.

The f0(1500) has the approximately equal coupling
constants with the ππ and KK systems, which appar-
ently could point up to its dominant flavour-singlet (e.g.,
glueball) component [27].

The f0(1710) is represented by the cluster correspond-
ing to the state with the dominant ss̄ component. Al-
though the lattice simulations suggest that the lowest
mass state of a pure glue would be the 0++ with a mass
of 1670±20 MeV [35], our result is in accord with refs. [8,
27], where the f0(1500) has been considered as a candi-
date for the scalar glueball. Note that QCD sum rules [36]
and the K-matrix method [3] showed both the f0(1500)
and f0(1710) to be mixed states with large admixture of
the glueball component. Their conclusions about the glue-
ball component is in agreement with our conclusion as to
the f0(1500) but not to f0(1710). It seems that the com-
plement of the our combined consideration by the ηη- and
ηη′-channels should not change substantially this situation
in view of the relative distance of the ηη threshold, and be-
cause the glueball component is not coupled to the ηη′ sys-
tem. Note also that the conclusion of QCD sum rules [36]
about the existence of light glueballs (below 1 GeV) con-
tradicts the lattice calculations and is not confirmed by
our method.
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We stress that our results are very decisive, be-
cause our approach is based only on the first princi-
ples (analyticity-microcausality and unitarity), immedi-
ately applied to the analysis of experimental data, and it
is free from dynamical assumptions, because a way of its
realization is based on the mathematical fact that a local
behaviour of analytic functions determined on the Rie-
mann surface is governed by the nearest singularities on
all corresponding sheets. It is very important that we were
able to describe the considered coupled processes without
diminishing the number of fitted parameters by some dy-
namical assumptions.

We think that multichannel states are most adequately
represented by clusters, i.e., by the poles on all the cor-
responding sheets. Pole clusters give a main effect of res-
onances, and on the uniformization plane they are their
good representation. The pole positions are rather sta-
ble characteristics for various models, whereas masses and
widths are very model dependent for wide resonances.
Earlier one noted that the wide-resonance parameters are
largely controlled by the non-resonant background (see,
e.g., [37]). In part this problem is removed by the pa-
rameterless and natural description of the ππ background;
there remains only a considerable dependence of resonance
masses and widths on the used model. Therefore, for those
states it makes little sense to publish masses and widths. It
seems to be more right to publish the pole positions on all
corresponding sheets. To specify a pole cluster, we propose
to use its centre on the complex-energy plane (the real part
of this centre). We have made this for the σ-meson (vari-
ant 1) owing to its large definition in the Particle Data
Group tables.
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